К ВОПРОСУ О КЛАССИФИКАЦИИ ГЕОДЕЗИЧЕСКОГО ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ ДЛЯ РЕШЕНИЯ ПРИКЛАДНЫХ ЗАДАЧ В СФЕРЕ ОБОРОНЫ, ЗЕМЛЕУСТРОЙСТВА И ИНЖЕНЕРНЫХ ИЗЫСКАНИЙ Гущина М.В.¹, Одинцов А.Ю.²

¹Гущина Мария Владимировна — аспирант,
Высшая школа сервиса и торговли,
Институт промышленного менеджмента, экономики и торговли
Санкт-Петербургский политехнический университет Петра Великого;

²Одинцов Алексей Юрьевич — адъюнкт,
кафедра фототопографии и фотограмметрии,
Военно-космическая академия им. А.Ф. Можайского,
г. Санкт-Петербург

Аннотация: рынок современных программных продуктов и программных комплексов, предназначенных для решения задач с использованием инструментальных геодезических средств, в настоящее время насыщен множеством представителей. Это программные продукты как отечественных ІТ-компаний, так и западных лидеров рынка производства геодезического оборудования. При этом при всем многообразии созданных информационных ресурсов не существует единой классификации, которая позволяла бы относить средства к той или иной группе. В статье предлагается альтернативная классификация геодезического программного обеспечения, используемого в сфере обороны, землеустройства и инженерных изысканий. Рассматриваются основные программы и программные комплексы, предназначенные для решения задач в соответствии с предлагаемой классификацией. Сформированы выводы и определены тенденции дальнейшего развития программных продуктов.

Ключевые слова: программное обеспечение, инженерно-геодезические изыскания, обработка результатов полевых измерений, землеустройство, географическая информационная система, уникальное программное обеспечение.

Отличительной особенностью современных технологий выполнения топографо-геодезических работ в сфере обороны, землеустройства и инженерных изысканий, как и других сфер применения, является высокая автоматизация процессов сбора и обработки данных о местности. При этом в зависимости от принятого решения на выполнение работ и способа съемки местности могут использоваться как отдельные, хорошо отлаженные технологии, так и уникальные технологии, позволяющие повысить эффективность выполнения работ на конкретно рассматриваемом участке местности. При этом каким бы ни был способ выполнения работ, он неизменно сводится к выполнению последующего камерального этапа. Камеральный этап в свою очередь сводится к применению различных программных и технических средств, упрощающих процесс создания конечного продукта и исключающих большое количество различных ошибок, которые носят, преимущественно, случайный характер.

Основными целями применения программных средств в технологиях топографо-геодезических работ являются:

- сокращение объемов работ камерального этапа топографо-геодезических работ;
- минимизация влияния внешних факторов на качество конечной продукции;
- снижение себестоимости работ за счет уменьшения времени пользования средствами получения исходной информации (тахеометры, ГНСС-аппаратура, БПЛА, наземные лазерные сканеры и т.д.);
- повышение конкурентоспособности предприятий-исполнителей за счет увеличения перечня выполняемых услуг и др.

Для решения рассмотренных задач производителями услуг закупаются у IT-компаний различные программные продукты. Каждый из программных продуктов рассчитан на свою категорию потребителей и имеет различный функционал. Опыт авторов по работы с различным программным обеспечением (ПО) позволяет предложить альтернативную классификацию геодезического ПО для решения прикладных задач в сфере обороны, землеустройства и инженерных изысканий (рисунок 1).

Рис. 1. Предлагаемая альтернативная классификация геодезического программного обеспечения для решения прикладных задач в сфере обороны и землеустройства

Представленная классификация затрагивает практически все основные программные продукты, которые используются исполнителями при реализации своих проектов. Существуют и ограниченные версии ПО, носящие уникальный характер и производимые по специальному заказу для отдельных компаний, но они носят скорее, характер исключения. Условно, в соответствии с представленной схемой можно выделить три основных направления в геодезическом ПО – общего назначения, специализированное и уникальное. Рассмотрим данные категории более подробно:

Геодезическое программное обеспечение общего назначения:

К представителям таких программных продуктов относятся: MS Exel, MS Access, MathCAD, MathLAB, различные инженерные калькуляторы, а также языки программирования, позволяющие реализовывать математический аппарат геодезических расчетов.

Характерным примером программы общего пользования считаются таблицы Excel. С использованием такого оборудования становится возможным применение различных геодезических расчетов и вычислений с использованием математических формул определенной сложности и большого объема данных [1]. Осуществляя ввод формул в ячейки таблицы, заполняя их исходными и другими (измеренными) данными, применяя определенную последовательность действий с ними, получают конечный искомый результат.

Станц. Ви Т.9	/indow В изир. 46 92	n a		o Seso	опасность 32	13-1	44	23 JW E	o o ,	Arial Cy	,	<u>*</u> 10	- X K 9	EB	34 9 % 000	28 38 课课	11.0.
Snaght m W BR x 1C • A CTanu. Bu	/indow В изир. 46 92	=Trig_N C Znp.	welir(C32,E.	9 Fero 32)+F32-G	опасность 32	13-1	44	23 JW E	o o ,			10, "	- I May 1	2 Uhreal Bread	Salar Contract Contra	700 970 91- 41-	-
Snaglt Er W R x 1C A CTOHU. Bu T.9	Б В изир. 46 92	=Trig_N C Znp.	welir(C32,E	9 Beso 32)+F32-G	засность.				-								
R x 1С • A Станц. Ви	В изир. 46 92	C Znp.	ivelir(C32;E: D	32)+F32-G	32	. 23		00.	No. also								
А Станц. Ви Т.9	В изир. 46 92	C Znp.	D						ASSESSED FOR								
Станц. Ви Т.9	изир. 46 92	Znp.		E	-												
T.9	46 92		Zohn		F	G	н	-1	J	K	L	M	N	0	P	Q	R
		+ 07° 20	coop.	Ѕнакл.	i np.	V np.	і обр.	V обр.	hnp. M.	dH	hcp. st.	Hcr.					
	62 91	01 20		32.125	1.500	0.001			0.309		***************************************	39.785		39.476			
		° 56' 33	3	35.669	1,500	0.001			0.290	0.019	cp.=	39.765	39.766	39.475			
	65 91	* 52' 59		35.554	1.500	0.001			0.331	-0.021	cp.=	39.806	39.806	39,475			
					- 110							-					
														39.475			
				Уравнив	ание ход	ов											
												Поправки		_			
			89° 30′ 55	84.928	1,500		1.500	1.330	-0.883	0.889	-0.886	0.003	-0.883	33.932	-0.884	888.0	-0.88
			89° 37' 13	28.479	1,500		1.500	1.500	-0.185	0.189	-0.187	0.001	-0.186	33.049	-0.185	0.189	-0.187
			89° 47° 15	46.850	1.500		1.550	1.500	-0.217	0.224	-0.221	0.001	-0.219	32.862	-0.218	0.224	-0.221
			90° 17' 26	42.427	1.550		1.610	1.450	0.054	-0.055	0.054	0.001	0.056	32.643	0 054	-0.055	0.05
			92° 01' 58	26.964	1.610		1.540	1.510	0.922	-0.926	0.924	0.001	0.925	32.699	0.922	-0.926	0.92
			90" 38' 48	34.822	1.540		1.650	1.370	0.114	-0.113	0.114	0.001		33.624	0.114	-0.113	0.114
	TX-8 88	57' 04	91° 02' 50	305.391	1.650	1.500	1.500	1.650	5,747	-5.725	5.736	0.009		33.739	5.740	-5.731	5.73
TX-8			Lхода.=	569.861					5.550	-5.518	5.534	0.018	5.552	39.484			
										hтеор.=		∆һпол.мм−		-0.018			
										hnp.=	5.534	∆ћдоп.мм =		±0.048			
**	EV 2 00		001 001 00	10.010	4 500	4.500	4 500	4 220	0.460	0.466	0.466	0.000	0.450	22 000	0.450	0.466	0.45
			89° 39' 00	46.643 40.611	1.500		1.500	1.330	-0.456	0.455	-0.455 -0.443	0.000	-0.456 -0.443	33.969	-0.456 -0.439	0.455	-0.458 -0.443
			89° 36' 31 89° 53' 43	29,445	1,500		1.500	1.330	-0.439	0.448	-0.443		-0.443	33.513	-0.439 -0.216		-0.44.
			90° 01° 11	46.294	1.500		1.570	1.330	-0.216	0.224	-0.220	0.000	-0.220	32.850	-0.216	0.224	-0.220
			90° 21' 16	46.294	1,570		1,600	1.330	0.070	-0.062	0.066	0.000	0.066	32.630	0 070	-0.062	0.066
		* 04' 51	30 21 16	26.969	1,600		1.570	1.400	0.070	-0.062	0.066	0.000	0.066	32.696	0.070	-0.062	0.066
			90° 28° 33	37.404	1.570		1.500	1.430	0.933	-0.211	0.933	0.000	0.933	33.629	0.933	-0.211	0.209
			91° 06' 08	292.881	1.500		1.500	1.500	5.648	-5.628	5.638	-0.001	5.637	33.838	5.642	-0.211	5.638
T.9	1-2 00	33 40	Lхода.=	562.665	1,300	1.300	1.300	1.300	5.533	-3.020	5.508	-0.002	5,506	39.475	5.042	-3.634	5.630
1.0	_		схода	302.003					3,333	hтеор.=		Ahnon.mm-	3.306	0.002			
▶ н Лист1	1 / Dure?	/ Burn /								meop	3.300	ZITTOTI.MM-		0.002	111		

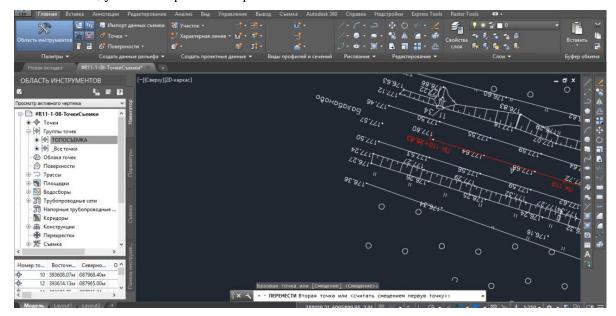
Рис. 2. Пример решения геодезических задач с использованием MS Exel

Специализированное геодезическое программное обеспечение:

Специализированное геодезическое ПО – это программы и программные комплексы, предназначенные для решения прикладных задач в геодезии, картографии, астрономии и фотограмметрии, посредство применения расчетных и графических модулей.

Специализированное геодезическое ПО целесообразно разделять на четыре основных типа, однако данное деление очень условное т.к. все программные комплексы способны решать широкий круг задач, в том числе и в соседних областях.

Практически все программы и программные комплексы имеют модульную систему построения (состоят из подсистем). При этом наиболее прогрессивные и удобные модули, определяющие конкурентоспособность программного продукта на рынке, и определяют его в один из классов ПО.


Пример ПК КРЕДО [10], который состоит из модулей: Credo dat, Credo-нивелир, Credo-расчет деформаций, Credo-топоплан, Credo-GNSS и др.

Инженерно-геодезические программные продукты:

Инженерно-геодезические программные продукты — это программы и программные комплексы, предназначенные для решения прикладных задач в геодезии, маркшейдерском деле, строительстве и архитектуре, основу которых составляют математические зависимости прикладного характеры из рассматриваемой области применения. В настоящее время это наиболее распространенные программные продукты. Это вызвано вцело объемами строительной области в экономике нашей страны и соответственно задействованием инженерно-геодезических инструментариев, в том числе и программных.

Наиболее часто в рассматриваемых областях применения исполнителями используются такие программные продукты как: AutoCAD, Komnac, IndorSurvey, Carlson SurvCE.

Выбор вышеуказанного ПО обусловлен наличием ряда функции, таких как [3]: обработка результатов полевых измерений с электронного оборудования; проектирование геодезических сетей; уравнивание, определение ошибок плановых (высотных) координат; обработка тахеометрических съемок и составление топопланов; формирование каталогов координат; расчеты данных по выносу проектов; экспорт съемочных точек и соответственно импорт расчетных данных; импорт и публикация DWF-файлов; визуализация и печать 3D моделей; моделирование поверхностей; работа с облаками точек, полученных способом наземного или воздушного лазерного сканирования.

Puc. 3. Применение программного продукта AutoCAD для задач инженерно-геодезических изысканий в строительстве

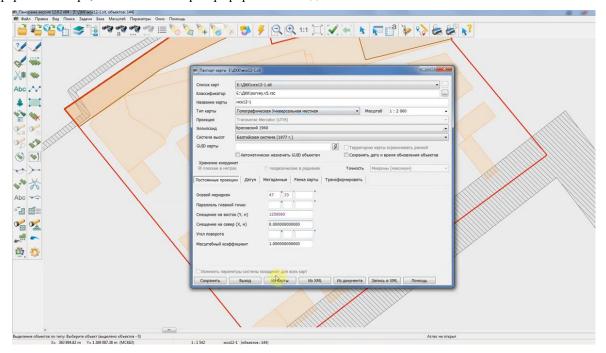
Астрономо-геодезические программные продукты:

Астрономо-геодезические программные продукты — это программы и программные комплексы, предназначенные для решения прикладных задач в геодезии и астрономии посредством применения специальных программ и алгоритмов, использующих данные о положении и изменении небесных светил. В настоящее время такие программные продукты наименее востребованы с точки зрения геодезии и картографии, однако в оборонной сфере, в силу ее специфики, методы геодезической астрономии попрежнему используются, а программные продукты применяются на практике [2].

Основными представителями в данной категории являются: Stellarium, Cartes du Ciel, WorldWide Telescope, ПК Орион.

К основным функциям рассматриваемых программных продуктов относятся: работа с базами данных небесных тел: спутников, комет, астероидов и т.д., возможность применения инструментов для угловых разделений; применение калькулятора затмений, пролётов небесных тел, метеоритных дождей; построение

контуров поля зрения в зависимости от указанного оборудования; определение координат небесных объектов; расчёт эфемерид и т.д.

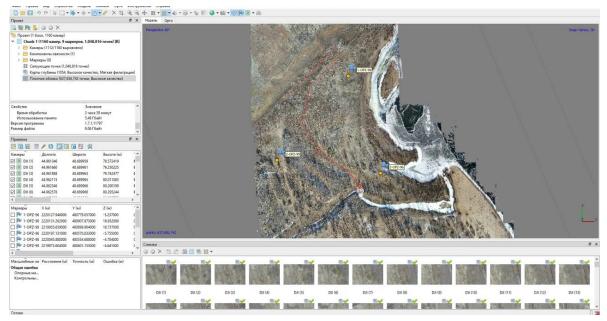

Puc. 3. Применение программного продукта Stellarium для определения координат небесных объектов

Картографические программные продукты.

Картографические программные продукты — это программы и программые комплексы, предназначенные для составления, редактирования и печати картографических материалов, а также для решения информационных и расчетных задач с использованием специализированных функций. В широком смысле данного понятия давно принято применять термин «Географическая информационная система» (ГИС). Однако в рассматриваемом контексте настоящей статьи их корректно рассматривать как программные продукты из сферы картографии.

Основными представителями рассматриваемой категории являются программные продукты: MapInfo, Панорама, ГИС Аксиома.

К основным функциям рассматриваемого ПО относятся [4]: создание и редактирование пространственных данных; настройка оформления объектов и слоев; получение информации по объектам карт; использование различных систем координат и проекций; осуществление поиска и выборки объектов; оформление карт; тематическое картографирование и т.д.



Фотограмметрические программные продукты

Фотографические программные продукты – это программы и программные комплексы, предназначенные для решения прикладных задач в геодезии, картографии посредством обработки данных аэросъемки, наземной съемки или данных дистанционного зондирования Земли.

К наиболее часто используемым программным продуктам относятся: Agisoft Metashape, КРЕДО ФОТОГРАММЕТРИЯ, ЦФС Photomod.

Реализуемые функции рассматриваемого ПО позволяют решать такие задачи как [5,9]: обработка отдельных фотографий, а также результатов аэрофотосъемки или фотографий наземной фотограмметрической съемки; импорт параметров ориентирования фотоснимков (координат и углов) из ЕХІГ импортируемых фотографий или из текстовых файлов; импорт, ручной ввод, редактирование опорных точек; создание связующих точек на фотографиях указанием положения опорных; фотограмметрическое уравнивание (расчет внешних и внутренних параметров ориентирования), формирование редкого облака точек как визуализации рассчитанной модели; возможность редактирования редкого облака для удаления ошибочно определенных точек и др.

Puc. 5. Обработка данных аэрофотосъемки с использованием Agisoft Metashape

Уникальное программное обеспечение.

Уникальное ПО – это программы и программные комплексы, предназначенные для решения специфических задач в области землеустройства, картографии и геологии, использующие отличный от других механизм решения прикладных задач, а также интерфейс и методику камеральной обработки. Если говорить более расширенно, то уникальное ПО – это специально созданный программный продукт воплощающий в себе индивидуальные требования заказчика.

К такому сегменту программных средств относится небольшое количество программных продуктов. Рассмотрим один из таких программных продуктов под названием «МПТС» (мобильная платформа мониторинга природно-техногенной среды), разработанную специально для решения задач одной из компаний, специализирующейся на аэросъемке с воздушной лазерной локацией [8].

Программный продукт МПТС предназначен для создания и работы с пространственными данными объектов строительства и природной среды. Также рассматриваемый программный продукт является ядром системы обеспечения служебной информацией о ходе строительства и передачи данных на мобильные устройства пользователей. Основными функциями МПТС являются: формирование цифровых данных об объектах и местности; обработка данных полученных различными средствами (преимущественно аэросъемка и лазерное сканирование); администрирование и доступ к базам геопространственных данных с мобильных устройств; мониторинг текущего состояния объектов и местности, выявление отклонений геометрических параметров при строительстве и эксплуатации объектов недвижимости и др.

Основными преимуществами МПТС относительно существующих аналогов являются: низкая себестоимость и стоимость последующей технической поддержки; скорость передачи данных и обработки информации; удобный и интуитивно-понятный интерфейс; наличие только «нужных» функций для решения прикладных задач; полная русификация и наличие удобной справочной системы для работы, как с самой системой, так и с ее мобильным приложением.

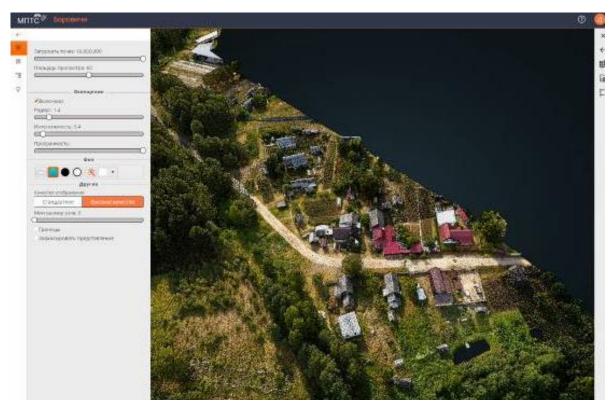


Рис. 6. Обработка облаков точек лазерных отражений и аэроснимков в программном продукте МПТС

Кроме рассмотренных видов геодезического ПО существует еще один вид ПО – портативное.

Портативное геодезическое ΠO – это вид ΠO предназначенного для автоматизации выполнения топографо-геодезических работ, а именно - для управления навигационной аппаратурой и средствами измерения.

Представителями такого вида программ являются программы SurvX и Спутник [6, 7]. Данное ПО устанавливается в миникомпьютеры приборов и полевые контроллеры управления.

Портативное (полевое) ПО позволяет решать такие задачи, как: съемка ситуации и рельефа; выполнение выноса объектов в натуру, контроль качества ранее выполненных работ, предварительная обработка данных, управление техникой и другим геодезическим оборудованием и др.



Рис. 7. Применение портативного программного обеспечения при полевых измерениях: а) SurvX, б) Спутник

В настоящей статье приведена классификация программных геодезических средств, которые наиболее часто применяются в практике исполнителями. В пределах рассматриваемых предметных областей автор считает корректным рассматривать именно такую классификацию, так как именно она полностью охватывает весь перечень задач, решаемых специалистами на практике. Вместе с тем необходимо отметить, что данные средства можно классифицировать лишь очень условно, так как многие из рассмотренных программных продуктов реализуют и функции соседних программ по классификации. Ярким примером является цифровая фотограмметрическая система (ЦФС) Photomod, которая, как и ПК КРЕДО, состоит сразу из нескольких модулей, охватывающих все сферы рассматриваемых областей экономики. Таким образом позиционирование того или иного программного продукта, в большинстве случаев, носят скорее маркетинговый ход, чем объективную необходимость.

Учитывая существующие возможности программных комплексов, а также тенденции в развитии новых программных продуктов целесообразно выделить четыре основных направления совершенствования геодезического ПО в рассматриваемых сферах. Это направления:

- разработки уникальных решений в направлении выполнения топографо-геодезических работ, позволяющих оптимизировать всю технологию в целом;
- совершенствования интерфейса управления процессом камеральной обработки данных, применение методов искусственного интеллекта;
- повышения универсальности ПО за счет обработки, комплексирования и синтезирования различных форматов исходных данных;
- подобности восприятия функционала и задач программных продуктов, покинувших отечественный рынок вследствие решения руководства IT-компаний (преимущественно по политическим мотивам).

Реализация данных направлений будет в дальнейшем определять успешность ПО на рынке. При этом наиболее преуспевающие IT-компании смогут рассчитывать на увеличение прибыли не только от использования ПО коммерческими структурами, но и от применения ПО органами государственного и муниципального управления.

Список литературы

- 1. *Арапов А.Г.* Способы нахождения неизвестных значений посредством интерполяции в Excel. // Geoinfo.ru, 2021. 21 апреля. [Электронный ресурс]. Режим доступа: https://geoinfo.ru/products-pdf/sposoby-nahozhdeniya-neizvestnyh-znachenij-posredstvom-interpolyacii-v-excel.pdf/ (дата обращения: 27.10.2022).
- 2. *Выборова Н.Н.* Использование программы Stellarium при изучении астрономии в школе и вузе // Вестник Шадринского государственного педагогического университета, 2019. № 3 (43). С. 94–99.
- 3. *Ершова А.А.* Применение ПО AutoCAD для создания топографических планов и дальнейшего управления инженерными данными на всех стадиях проектирования. Интерэкспо Гео-Сибирь-2013, г. Новосибирск: Междунар. науч. конф. «Геодезия, геоинформатика, картография, маркшейдерия» сб. материалов в 3 т. Т. 1. Новосибирск: СГГА, 2013. С. 152–154.
- 4. *Ласточкина С.И.* Использование ГИС «Панорама» при создании и обновлении цифровых топографических карт для целевого применения в АПК / С.И. Ласточкина // Особенности правового режима, оценки и картографирования сельскохозяйственных земель сельскохозяйственного назначения (монография) / В. В. Северцов [и др.]. Горки: БГСХА, 2018. С. 102–136.
- 5. Обиралов А.И., Лимонов А.Н., Гаврилова Л.А. «Фотограмметрия и дистанционное зондирование». Москва, 2016. 297 с.
- 6. Полевое программное обеспечение Спутник, версия 1.3: Руководство пользователя. М.: ООО Руснавгеосеть, 2018. 74 с.
- 7. Программное обеспечение SurX4.0: Руководство пользователя. М.: ООО Аспект, 2010. 118 с.
- 8. Цифровая платформа мониторинга природно-технологической среды, 2021. 26 октября. [Электронный ресурс]. Режим доступа: https://https://mpts.i-core.ru/ (дата обращения: 27.10.2022).
- 9. Цифровая фотограмметрическая система Photomod 7.3: Руководство пользователя. М.: ЗАО «РАКУРС», 2018. 29 с.
- 10. *Шарипов Д.М.* Оптимальное рабочее место инженера-геодезиста на основе ПК КРЕДО // Геопрофи, 2022. № 3. С. 18–23.